题目描述
NAND(与非)是一种二元逻辑运算,其运算结果为真当且仅当两个输入的布尔值不全为真。NAND运算的真值表如下(1表示真,0表示假):
A | B | A NAND B |
---|---|---|
0 | 0 | 1 |
0 | 1 | 1 |
1 | 0 | 1 |
1 | 1 | 0 |
两个非负整数的NAND是指将它们表示成二进制数,再在对应的二进制位进行NAND运算。由于两个二进制数的长度可能不等,因此一般约定一个最高位K,使得两个数的二进制表示都不 超过K位,不足K位的在高位补零。给定N个非负整数A1,A2……AN和约定位数K,利用NAND运算与括号,每个数可以使用任意次,请你求出范围[L,R]内可以被计算出的数有多少个。
输入输出格式
输入格式:
输入文件第一行是用空格隔开的四个正整数N,K,L和R,接下来的一行是N个非负整数A1,A2……AN,其含义如上所述。 100%的数据满足K<=60且N<=1000,0<=Ai<=2^k-1,0<=L<=R<=10^18
输出格式:
仅包含一个整数,表示[L,R]内可以被计算出的数的个数
输入输出样例
输入样例:
3 3 1 4
3 4 5
输出样例:
4
说明
样例1中,(3 NAND 4) NADN (3 NAND 5) = 1,5 NAND 5 = 2,3和4直接可得。
分析
被long long的<<卡死。。。
A NAND B
相当于!(A&B)
而!(A&A)=!A
,因此有了!
的操作!(A NAND B)=A&B
,因此有了&
的操作
如有第i位对于其他任意一位在n个数中至少有a[x][i]!=a[x][j]
则可形成形如000001000
的数
否则尽量可得到类似形如001001001
的数
从而得出结论只要满足这些位相同的要求,可生成任意数
利用并查集数位dp
参考题解
CODE
|
|